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Generalized Young’s equation for rough and heterogeneous substrates: A microscopic proof
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We derive by microscopic techniques applied todal&@tice gas model, a generalization of Young’s equation
for rough and chemically heterogeneous substrates, which combines both Cassie’'s and Wenzel's laws. We also
show that, already in the homogeneous case, the model can exhibit, for particular geometries and appropriated
values of the parameters, two regimes governed either by the Wenzel's law or by the Cassie’s law.
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I. INTRODUCTION roughness defined as the ratio of the aréaof the surface

and the area of its projection on the horizontal plane:
Wetting of surfaces is a subject of primary importance in_ AJA.
many fundamental processes. This science is dominated by Again in that case, it has been shown using macroscopic

the well-known Young's equation describing the behavior of[4] and microscopid5,6] arguments that, to the leading or-
a sessile drop of a liqui@ on top of a solid surfac& (see der

Fig. 1 in equilibrium with the mediunA,

TA COSO=T(Taw— Taw)™*, €)

7AB COSO=TAw ™ TBW» @ where (raw— 7sw)* refers to the wall tensions of the flat

surface.
where 7;; refers to the interfacial tension between the two  These results, however, do not allow a clear description of
mediai andj and @ is the equilibrium contact angle of the what will happen for a real surface, i.e., heterogeneous and
droplet onW [it is assumed here thatsg is isotropic, an  rough.
irrelevant hypothesis in the present study that concerns the Interesting results based on macroscopic considerations
right-hand side of Eq(1)]. have been developed in Rdf7] in this direction. In this

Many recent workg1] have proved the validity of that reference, Swain and Lipowsky propose a generalized
equation even from microscopic arguments using statistica¥Young’s equation which, within our notations, can be written
mechanics. as

All the different techniques of proof share the fact that the
substrateW under consideration has to be a pure and flat COSO=r,Cy COSO;+1,C, COSH,, (4)
surface. The problem from the experimental point of view is . )
that a surface is only rarely pure and flat. Most Commomy,w_here,rici is _the ratio of the nonplanar surface area covered
we have to deal with heterogeneous and rough surfaces. With materiali to the total planar area. _

There exist in the literature complementary approaches It is precisely the aim of this paper to analyze this prob-
that allow a description of wetting for heterogeneous sur/eém from a microscopic point of view. Using statistical me-
faces(Cassi¢ or for rough surfaceéWenze). c;hamcs, |t. wﬂl be shown that this generalized Young’s equa-

Let us first consider the heterogeneous cases. It has bedfn is satisfied up to a temperature dependent correction.
shown using macroscopje] and microscopi¢3] arguments Let us mention that another approach could be consid-

that if the substrate is flat but made of two speadsand  ered. During the spreading of liquid on top of a heteroge-
W, with concentratiorc, andc,=1—c,, respectively, we N€OUS substrate, one can observe the_ appearance qf two
angles 6, and 6,, respectively, advancing and receding

will have . . .
angles. The difference betweeh and 6, is a dynamical
effect that leads to the so-called hysteresis of contact angles.

TaB COSO=C1(Taw, — Taw,) + C2(Taw, ~ Tw,). (2
When the surface is rough, one usually introduces the A
B
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The equilibrium properties of our system are instead conz, \(A(L)NV) andZ_ (A(L)NV) be the partition func-

tained in the wall tensiod 7 that we study here. tions of the model(5) in the volumeA (L) NV with, respec-
tively, + and — boundary conditions on that part of the
Il. THE MODEL boundary of A(L)NV that is not part of the wallon the

wall, the boundary conditions are alwaysl). We then de-
We propose herein to model the influence of roughnesfine
and heterogeneities on wetting in terms of a suitable modi-
fied half-infinite Ising model. Namely, we will describe the , 1 Z% WA (L)NV)
wall by the boundaryyW of a half-infinite latticeWc 73, BTi~W:_I_|'mx2(2|_+1)2|n Z.(AL)
which represents the substrate. This boundary will be rough - N
(see below for the precise definition @) and we shall con-  o|jowing Refs. [5, 8], where 8= 1/kT is the inverse tem-

siderW to be the union of two disjoint subset¥, andW,.  perature. For a drop of spins of a given fixed volume, we
In this way, we get an inhomogeneous wa#lW introduce

=JW,UJW, composed of several pieces of the two differ-
ent substrates. For the vessel containing the drop and the gas AT=7_ W= T4 w, 8
we take the complement=7*W. To each sitex of the _
vesselV, we associate a variable, that may take two val- 9etting
ues;+1 associated to a particle gtand—1 associated to an
empty site. We assume that the substrate is completely filled, BAT=— lim n Z- WA (L)NV) _
i.e., o,=+1 for all xe W. Inside the vessel, the variables Lo (L1277 Z, WA(L)NV)
are coupled with a nearest neighbor coupliig> 0, repre-
senting a nearest neighbor attraction of particles while at th&Ve let (A7)7 and (A7)3 correspond to the case of a flat wall
boundary between the vessel and the substrate the spins with coupling constantk ; andK,, respectively. Finally, the
the vessel are coupled with a nearest neighbor coupling conrsual surface tension, _ between thet and — phases is
stant,K,/2 with the particles oMW;, or K,/2 with the par- defined in the standard wa@]. Namely, in Ref.[7] one
ticles of W,. Formally, these interactions are described byreplaceszivw by the partition function of the Ising model in
the Hamiltonian the box A (L) with + boundary conditions above the plane
K, X3=—1/2 and— boundary conditions below this plane.

(€)

J
H=-5 > OxTy~ o > 0T o > oy,
(xy) (xy) (xy) I1l. RESULTS
x,yeV xeV,yeW; xeV,yeW,
5 Our first result states

where(xy) denotes nearest neighbor pairs.

In the perfectly flat case, the s&t modeling the substrate
will be just the half.spac{ex= (X1,X5,X3) € Z3|x3§ 0}. More provided
generally, we consider a substrate surfa@é (defined as the
set unit plaquettes, whose center intersects the bapds C=(1—a;— ay)I— ay|K{|— ay|K,|>0, (11
e Z2\W, ye W, in their middle point given by a solid-on-
solid (SOS type interface, i.e.JW corresponds to the graph and SC>5.9. Here the constanig; <1 anda,<1 are de-
of a function x3=x5(X;,X,). Even though our methods termined by the geometry of the subwadlé/; and JW,.
would allow to treat certain kinds of random impurities, we Note that the factors,c, andr,c, refer in fact[see Eq(6)]
assume here thaiW, as well asdW,; and JW, are fixed to the ratio of the nonplanar surface area covered by the
periodic SOS configurations with periadin both the 1 and species 1 and 2 to the projected planar area.
2 directions. LetA; and A, be the areas of the substrate A consequence of this result is that in the case of a rou_gh
surfacesdW, and aW, andKl andKZ their projection onto and heterogeneous wall, both t_he' Wenzel's and the Cassie’s
the horizontal plane. The respective roughness, and laws apply. These laws are satisfied up to a small tempera-

concentrations; ,c,, can then be defined by ture dependent correctigtending exponentially to zero with

the temperatune Referring to isotropic surfaces, one gets in
A, Kk P o terms of contact angles
r ::1 C :_ _ = 1 -
“ A “ AL+A, cOSO=r,C; cOSOI+1,¢, coshit+O(e A0,  (12)

A7=r,C1(AT) T +1,c5(A7)% +0(e FC), (10

To present our results in a rigorous manner, we define thproving from microscopic argument the validity of E§.3)
wall free energies-, \y and r_ ,y for the model(5). Consid-  in Ref.[7].
ering a finite latticeA (L) ={x=(Xq,Xy,X3) € Z3:|x| <L, i The conditions for the validity of Eq(10) are twofold.
=1,2,3}, we introduce the partition functiors, (A(L)) and  The restriction to low temperaturésondition3C>5.9) is of
Z_(A(L)) as the partition functions of the standard Isinga technical nature and stems from the conditions needed to
model in the volumeA(L) with, respectively,+ and — ensure the convergence of the used low-temperature expan-
boundary conditions on the boundary ofA\. Let sions.
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Here 6" refers to a flat solid surface and the second term

4craa—cnr takes into account the liquid/air interface contribution.

All the techniques for the proofs of these results have
already been described in RefS, 6]. For completeness and
without loss of generality, let us sketch out the proofs in the
SOS approximation of the model. In order to prove Ed),
we start with the analysis of the ground-state configurations
contributing to Z_ W(A(L)NV)/Z, w(A(L)NV). In the
SOS approximation, corresponding to the anisotropic model
with infinite vertical couplings, this ratio can be described by
a SOS contouf separatingfor the configuration of spins of
the numeratgrthe region filled with+ belowI" (containing
the wal) from the region of— abovel’. The associated en-

FIG. 2. Substrate surfacen. ergy AH(I') is twice the sum of the couplings of the bonds
cut by the plaquettes df. Whenever conditior{11) is ful-

On the other hand, the conditiodl) of smalliness of filled, the configuratiod’= #W following the wall, and with
|K1/J] and|K,/J] is intimately related to the physics of the €nergy AH(IW)=Ky[dW;NA(L)[+Ko|dW,NA(L)], is
problem, and one may ask what happens whence increasir@gtually the ground state of the system. This leads in the
K, andK,. To study this issue we restrict to simple geom-thermodynamic limit, to aspecifi9 ground-state contribu-
etries for the wall. Namely, we let the boundary surfayg ~ ton
be the graph of the functioxs(X4,X,) given on the cylinder AH(IW)

{i<x;<a+3, i<x,<a+3} by Ah(oW) = lim mzrlclKﬁrzcsz, (17)

L—oo

—bt3 for j=xy=c+z : to the differencg10).

1 otherwise, To get Eq.(10) for nonvanishing temperatures, one has to
take into account excitations. They are given here by con-
and determined on the complement of this cylinder by theiours simply defined as the connected components of sym-
periodicity (see Fig. 2 The roughness of such a wallis metric difference betweel’ and JW. The system is then
=1+4bda’. described by a “gas of contours” touching the wall and to
Furthermore, we assume the wall to be homogeneous, takvhich we apply the powerful method of cluster expansion
ing K;=K,=K. Let p=1+4b/c if b>0, and p=1 [9]. The free energy of this gas then yields the finite tem-

X3(Xq,Xp) =

+4|b|c?/(a®—c?) if b<O. perature correction to the ground-state behaviar).
Our main result in this case is Namely,
(i) If |K|<J/p, then A7=r1,C K +1,CK,+F. (18
Ar=r(A7)* +O(e PCw), (13 Here, the free energly can be calculated as an explicit low-
o ' temperature series.
which is the Wenzel's law. Proving first that the energi(5), of an excitations of
(i) If I/p<K<J, then areaa is bounded below byCa and that the number of

excitations of arear passing through a given point is less
than 12¢, the convergence of the series holds as soon as
which is the Cassie’s law. BC>5.9 (a value that could be improviedAs a result, one
Here ¢’ =(c/a)? if b>0 andc’'=1—(c/a)? if b<0, and Can rigorously bound by O(e™#%), implying thus Eq(10) _
C..,Co are constants determined by the parameteasid J. from. Eqg. (17) taking into accognt thatl the same analysis
As before, it is assumed that the temperature is sufficientiPplies to 7)1 and (A7); leading to higher-order correc-
low, namely, that3C,,>5.9 andSC,>5.9. tions for the corresponding free energies. o
This result can be interpreted as follows. Due to the com- T0 prove Egs.(13) and (14), we start again with the
petition between the solid/liquitk) and the liquid/liquidJ) ~ 9round-states analysis, which yields
interactions, the system will choose between two ground

Ar=c'7, _+(1-c')(AD)*+0(e F%), (14

configurations: the liquid filling the pores or leaving the Ah(OW)=1K, (19
pores empty. Whenever the pores are empty, we recover the ot .
(isotropig Wenzel's law Ah(Tg)=c'J+(1=C)K, (20
cosf=r COSgﬂat"‘ O(G_BCW). (15) Ah(rk):J, 1sk<+ o, (21)
In the other case, we géfor isotropic media where I'y denotes the horizontal plane;=k+1/2. This
gives the following phase diagram for the ground states: the
cosf=(1—c’)cosh"+c’ +O(e FCo). (16)  ground state is the configuratiowW for |K|<J/p, it coin-
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A K dynamic limit. Indeed, witth>0, any configuration follow-

K=1J ing, at each pore, either the walV or the horizontal plane

J I'y, is a ground state with specific energy given by E@)

P or (19 [both expressions coincide in this cadd(dW)
=Ah(T'g)=Ah]. This leads to the existence of a specific

oW residual entropy at zero temperature

7 S=(1/a?)In 2.

Ty

v

This suggests that 7 behaves likeAh—S/8+ O(e‘ﬁc') for
values ofK/J in the vicinity of the pointK/J=1/p. We
FIG. 3. Diagram of ground states. believe that this is indeed the case and plan to examine this
point in a future work.
cides with the configuratiom, for J/p<K<J, while for Finally, let us notice that such kinds of phenomena will
K>J any of the configurationE, is a ground statésee Fig. also occur for more general geometries as well as in the case
3), where the coupling&,; andK, are different.
Then Eq.(13) appears as a corollary of EG.0), while for
the proof of Eq.(14) the excitations are defined as the sym-
metric difference betweeh andI'y. The low-temperature

cluster expansion again allows us to control the corrections To summarize, we have proved within al Jattice gas :
provided the conditions ol, J, and3 are fulfilled and ones model on a rough and heterogeneous substrate that the dif-

gets from Eqs(19) and (20) Egs. (13) and (14). ferential wall tension that governs wetting satisfies, for low

From a physical point of view, the first regime, Ed3), temperatures, a generalized Young's equation that gives as

will correspond to the case where the air will fill all the poresb.yprOdUCt Wenzel's and Cassie’s laws. In addition, for

that are not in contact with the drop. The second regime, E _|_mple geometries c_)f the sgpstrate, we _have shown that this
(14), has to be associated to the case where the liquid fills a |ff’erent|'al wall tension e.Xr,"b'tS a transition between a Wen-
the pores of the surfac&WV of Fig. 2. Let us stress that the zel's regime and a Cassie’s regime.
appearance of these two different regimes is also intimately
related to the geometry of the substrate through the param-
eterp. J.R. wishes to thank the Center de Recherche en Mode
On the other hand, wheld=J/p a degeneracy of ground sation Moleulaire, Universitede Mons-Hainaut for warm
states appears, their number tending to infinity in the thermohospitality and financial support.

IV. CONCLUDING REMARKS
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