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Generalized Young’s equation for rough and heterogeneous substrates: A microscopic proof

Joël De Coninck* and Jean Ruiz†
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We derive by microscopic techniques applied to a 3d lattice gas model, a generalization of Young’s equation
for rough and chemically heterogeneous substrates, which combines both Cassie’s and Wenzel’s laws. We also
show that, already in the homogeneous case, the model can exhibit, for particular geometries and appropriated
values of the parameters, two regimes governed either by the Wenzel’s law or by the Cassie’s law.
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I. INTRODUCTION

Wetting of surfaces is a subject of primary importance
many fundamental processes. This science is dominate
the well-known Young’s equation describing the behavior
a sessile drop of a liquidB on top of a solid surfaceW ~see
Fig. 1! in equilibrium with the mediumA,

tAB cosu5tAW2tBW , ~1!

where t i j refers to the interfacial tension between the tw
media i and j and u is the equilibrium contact angle of th
droplet onW @it is assumed here thattAB is isotropic, an
irrelevant hypothesis in the present study that concerns
right-hand side of Eq.~1!#.

Many recent works@1# have proved the validity of tha
equation even from microscopic arguments using statist
mechanics.

All the different techniques of proof share the fact that t
substrateW under consideration has to be a pure and
surface. The problem from the experimental point of view
that a surface is only rarely pure and flat. Most common
we have to deal with heterogeneous and rough surfaces

There exist in the literature complementary approac
that allow a description of wetting for heterogeneous s
faces~Cassie! or for rough surfaces~Wenzel!.

Let us first consider the heterogeneous cases. It has
shown using macroscopic@2# and microscopic@3# arguments
that if the substrate is flat but made of two speciesW1 and
W2 with concentrationc1 and c2512c1 , respectively, we
will have

tAB cosu5c1~tAW1
2tBW1

!1c2~tAW2
2tBW2

!. ~2!

When the surface is rough, one usually introduces
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roughnessr defined as the ratio of the areaA of the surface
and the areaĀ of its projection on the horizontal plane:r

5A/Ā.
Again in that case, it has been shown using macrosco

@4# and microscopic@5,6# arguments that, to the leading o
der,

tAB cosu5r ~tAW2tBW!* , ~3!

where (tAW2tBW)* refers to the wall tensions of the fla
surface.

These results, however, do not allow a clear description
what will happen for a real surface, i.e., heterogeneous
rough.

Interesting results based on macroscopic considerat
have been developed in Ref.@7# in this direction. In this
reference, Swain and Lipowsky propose a generali
Young’s equation which, within our notations, can be writt
as

cosu5r 1c1 cosu11r 2c2 cosu2 , ~4!

where,r ici is the ratio of the nonplanar surface area cove
with materiali to the total planar area.

It is precisely the aim of this paper to analyze this pro
lem from a microscopic point of view. Using statistical m
chanics, it will be shown that this generalized Young’s equ
tion is satisfied up to a temperature dependent correction

Let us mention that another approach could be con
ered. During the spreading of liquid on top of a heterog
neous substrate, one can observe the appearance of
angles ua and u r , respectively, advancing and recedin
angles. The difference betweenua and u r is a dynamical
effect that leads to the so-called hysteresis of contact ang

-

FIG. 1. Young’s contact angle.
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The equilibrium properties of our system are instead c
tained in the wall tensionDt that we study here.

II. THE MODEL

We propose herein to model the influence of roughn
and heterogeneities on wetting in terms of a suitable mo
fied half-infinite Ising model. Namely, we will describe th
wall by the boundary]W of a half-infinite latticeW,Z3,
which represents the substrate. This boundary will be ro
~see below for the precise definition ofW! and we shall con-
siderW to be the union of two disjoint subsetsW1 andW2 .
In this way, we get an inhomogeneous wall]W
5]W1ø]W2 composed of several pieces of the two diffe
ent substrates. For the vessel containing the drop and the
we take the complementV5Z3\W. To each sitex of the
vesselV, we associate a variablesx that may take two val-
ues;11 associated to a particle atx, and21 associated to an
empty site. We assume that the substrate is completely fi
i.e., sx[11 for all xPW. Inside the vessel, the variable
are coupled with a nearest neighbor couplingJ/2.0, repre-
senting a nearest neighbor attraction of particles while at
boundary between the vessel and the substrate the spi
the vessel are coupled with a nearest neighbor coupling
stant,K1/2 with the particles ofW1 , or K2/2 with the par-
ticles of W2 . Formally, these interactions are described
the Hamiltonian

H52
J

2 (
~xy!

x,yPV

sxsy2
K1

2 (
~xy!

xPV, yPW1

sx2
K2

2 (
~xy!

xPV, yPW2

sx ,

~5!

where^xy& denotes nearest neighbor pairs.
In the perfectly flat case, the setW modeling the substrate

will be just the half space$x5(x1 ,x2 ,x3)PZ3ux3<0%. More
generally, we consider a substrate surface]W ~defined as the
set unit plaquettes, whose center intersects the bondsxy, x
PZ3\W, yPW, in their middle point! given by a solid-on-
solid ~SOS! type interface, i.e.,]W corresponds to the grap
of a function x35x3(x1 ,x2). Even though our method
would allow to treat certain kinds of random impurities, w
assume here that]W, as well as]W1 and ]W2 are fixed
periodic SOS configurations with perioda in both the 1 and
2 directions. LetA1 and A2 be the areas of the substra
surfaces]W1 and]W2 and Ā1 and Ā2 their projection onto
the horizontal plane. The respective roughnessr 1 ,r 2 and
concentrationsc1 ,c2 , can then be defined by

r k5
Ak

Āk

, ck5
Āk

Ā11Ā2

, k51,2. ~6!

To present our results in a rigorous manner, we define
wall free energiest1,W andt2,W for the model~5!. Consid-
ering a finite latticeL(L)5$x5(x1 ,x2 ,x3)PZ3:uxi u<L, i
51,2,3%, we introduce the partition functionsZ1„L(L)… and
Z2„L(L)… as the partition functions of the standard Isi
model in the volumeL(L) with, respectively,1 and 2
boundary conditions on the boundary ofL. Let
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Z1,W„L(L)ùV… andZ2,W„L(L)ùV… be the partition func-
tions of the model~5! in the volumeL(L)ùV with, respec-
tively, 1 and 2 boundary conditions on that part of th
boundary ofL(L)ùV that is not part of the wall~on the
wall, the boundary conditions are always11!. We then de-
fine

bt6,W52 lim
L→`

1

2~2L11!2 ln
Z6,W

2
„L~L !ùV…

Z6„L~L !…
, ~7!

following Refs. @5, 8#, whereb51/kT is the inverse tem-
perature. For a drop of1 spins of a given fixed volume, we
introduce

Dt5t2,W2t1,W , ~8!

getting

bDt52 lim
L→`

1

~2L11!2 ln
Z2,W„L~L !ùV…

Z1,W„L~L !ùV…
. ~9!

We let (Dt)1* and (Dt)2* correspond to the case of a flat wa
with coupling constantsK1 andK2 , respectively. Finally, the
usual surface tensiont1,2 between the1 and 2 phases is
defined in the standard way@9#. Namely, in Ref.@7# one
replacesZ6,W

2 by the partition function of the Ising model in
the boxL(L) with 1 boundary conditions above the plan
x3521/2 and2 boundary conditions below this plane.

III. RESULTS

Our first result states

Dt5r 1c1~Dt!1* 1r 2c2~Dt!2* 1O~e2bC!, ~10!

provided

C[~12a12a2!J2a1uK1u2a2uK2u.0, ~11!

and bC.5.9. Here the constantsa1,1 anda2,1 are de-
termined by the geometry of the subwalls]W1 and]W2 .
Note that the factorsr 1c1 andr 2c2 refer in fact@see Eq.~6!#
to the ratio of the nonplanar surface area covered by
species 1 and 2 to the projected planar area.

A consequence of this result is that in the case of a ro
and heterogeneous wall, both the Wenzel’s and the Cas
laws apply. These laws are satisfied up to a small temp
ture dependent correction~tending exponentially to zero with
the temperature!. Referring to isotropic surfaces, one gets
terms of contact angles

cosu5r 1c1 cosu1
flat1r 2c2 cosu2

flat1O~e2bC!, ~12!

proving from microscopic argument the validity of Eq.~9.3!
in Ref. @7#.

The conditions for the validity of Eq.~10! are twofold.
The restriction to low temperatures~conditionbC.5.9! is of
a technical nature and stems from the conditions neede
ensure the convergence of the used low-temperature ex
sions.
9-2
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On the other hand, the condition~11! of smallness of
uK1 /Ju and uK2 /Ju is intimately related to the physics of th
problem, and one may ask what happens whence increa
K1 andK2 . To study this issue we restrict to simple geom
etries for the wall. Namely, we let the boundary surface]W
be the graph of the functionx3(x1 ,x2) given on the cylinder

$ 1
2 <x1<a1 1

2 , 1
2 <x2<a1 1

2 % by

x3~x1 ,x2!5H 2b1 1
2 for 1

2 <x1<c1 1
2 , 1

2 <x2<c1 1
2 ,

1
2 otherwise,

and determined on the complement of this cylinder by
periodicity ~see Fig. 2!. The roughness of such a wall isr
5114bc/a2.

Furthermore, we assume the wall to be homogeneous,
ing K15K25K. Let r5114b/c if b.0, and r51
14ubuc2/(a22c2) if b,0.

Our main result in this case is

~i! If uKu,J/r, then

Dt5r ~Dt!* 1O~e2bCw!, ~13!

which is the Wenzel’s law.
~ii ! If J/r,K,J, then

Dt5c8t1,21~12c8!~Dt!* 1O~e2bC0!, ~14!

which is the Cassie’s law.
Here c85(c/a)2 if b.0 and c8512(c/a)2 if b,0, and
Cw ,C0 are constants determined by the parametersK andJ.
As before, it is assumed that the temperature is sufficie
low, namely, thatbCw.5.9 andbC0.5.9.

This result can be interpreted as follows. Due to the co
petition between the solid/liquid~K! and the liquid/liquid~J!
interactions, the system will choose between two grou
configurations: the liquid filling the pores or leaving th
pores empty. Whenever the pores are empty, we recove
~isotropic! Wenzel’s law

cosu5r cosuflat1O~e2bCw!. ~15!

In the other case, we get~for isotropic media!

cosu5~12c8!cosuflat1c81O~e2bC0!. ~16!

FIG. 2. Substrate surface]W.
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Here uflat refers to a flat solid surface and the second te
takes into account the liquid/air interface contribution.

All the techniques for the proofs of these results ha
already been described in Refs.@5, 6#. For completeness an
without loss of generality, let us sketch out the proofs in t
SOS approximation of the model. In order to prove Eq.~10!,
we start with the analysis of the ground-state configurati
contributing to Z2,W„L(L)ùV…/Z1,W„L(L)ùV…. In the
SOS approximation, corresponding to the anisotropic mo
with infinite vertical couplings, this ratio can be described
a SOS contourG separating~for the configuration of spins o
the numerator! the region filled with1 below G ~containing
the wall! from the region of2 aboveG. The associated en
ergy DH(G) is twice the sum of the couplings of the bond
cut by the plaquettes ofG. Whenever condition~11! is ful-
filled, the configurationG[]W following the wall, and with
energy DH(]W)5K1u]W1ùL(L)u1K2u]W2ùL(L)u, is
actually the ground state of the system. This leads in
thermodynamic limit, to a~specific! ground-state contribu-
tion

Dh~]W!5 lim
L→`

DH~]W!

~2L11!2 5r 1c1K11r 2c2K2 , ~17!

to the difference~10!.
To get Eq.~10! for nonvanishing temperatures, one has

take into account excitations. They are given here by c
tours simply defined as the connected components of s
metric difference betweenG and ]W. The system is then
described by a ‘‘gas of contours’’ touching the wall and
which we apply the powerful method of cluster expansi
@9#. The free energyF of this gas then yields the finite tem
perature correction to the ground-state behavior~17!.
Namely,

Dt5r 1c1K11r 2c2K21F. ~18!

Here, the free energyF can be calculated as an explicit low
temperature series.

Proving first that the energyE(d), of an excitationd of
area a is bounded below byCa and that the number o
excitations of areaa passing through a given point is les
than 122a, the convergence of the series holds as soon
bC.5.9 ~a value that could be improved!. As a result, one
can rigorously boundF by O(e2bC), implying thus Eq.~10!
from Eq. ~17! taking into account that the same analys
applies to (Dt)1* and (Dt)2* leading to higher-order correc
tions for the corresponding free energies.

To prove Eqs.~13! and ~14!, we start again with the
ground-states analysis, which yields

Dh~]W!5rK , ~19!

Dh~G0!5c8J1~12c8!K, ~20!

Dh~Gk!5J, 1<k,1`, ~21!

where Gk denotes the horizontal planex35k11/2. This
gives the following phase diagram for the ground states:
ground state is the configuration]W for uKu,J/r, it coin-
9-3
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cides with the configurationG0 for J/r,K,J, while for
K.J any of the configurationsGk is a ground state~see Fig.
3!.

Then Eq.~13! appears as a corollary of Eq.~10!, while for
the proof of Eq.~14! the excitations are defined as the sy
metric difference betweenG and G0 . The low-temperature
cluster expansion again allows us to control the correcti
provided the conditions onK, J, andb are fulfilled and ones
gets from Eqs.~19! and ~20! Eqs.~13! and ~14!.

From a physical point of view, the first regime, Eq.~13!,
will correspond to the case where the air will fill all the por
that are not in contact with the drop. The second regime,
~14!, has to be associated to the case where the liquid fills
the pores of the surface]W of Fig. 2. Let us stress that th
appearance of these two different regimes is also intima
related to the geometry of the substrate through the par
eterr.

On the other hand, whenK5J/r a degeneracy of groun
states appears, their number tending to infinity in the therm

FIG. 3. Diagram of ground states.
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dynamic limit. Indeed, withb.0, any configuration follow-
ing, at each pore, either the wall]W or the horizontal plane
G0 , is a ground state with specific energy given by Eq.~18!
or ~19! @both expressions coincide in this caseDh(]W)
5Dh(G0)5Dh#. This leads to the existence of a speci
residual entropy at zero temperature

S5~1/a2!ln 2.

This suggests thatDt behaves likeDh2S/b1O(e2bC8) for
values of K/J in the vicinity of the pointK/J51/r. We
believe that this is indeed the case and plan to examine
point in a future work.

Finally, let us notice that such kinds of phenomena w
also occur for more general geometries as well as in the c
where the couplingsK1 andK2 are different.

IV. CONCLUDING REMARKS

To summarize, we have proved within a 3d lattice gas
model on a rough and heterogeneous substrate that the
ferential wall tension that governs wetting satisfies, for lo
temperatures, a generalized Young’s equation that give
byproduct Wenzel’s and Cassie’s laws. In addition,
simple geometries of the substrate, we have shown that
differential wall tension exhibits a transition between a We
zel’s regime and a Cassie’s regime.
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